首页> 外文OA文献 >Speeding up the high-accuracy surface modelling method with GPU
【2h】

Speeding up the high-accuracy surface modelling method with GPU

机译:用GpU加速高精度曲面建模方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In order to find a solution for accurate, topographic data-demanding applications, such as catchment hydrologic modeling and assessments of anthropic activities impact on environmental systems, high-accuracy surface modeling (HASM) method is developed. Although it can produce a digital elevation model (DEM) surface of higher accuracy than classical methods, e.g. inverse distance weighted, spline and kriging, HASM requires numerous iterations to solve large linear systems, which impede its applications in high-resolution and large-scale surface interpolation. This paper aims to demonstrate the utilization of graphics' processing units (GPUs) device to accelerate HASM in constructing large-scale and high-resolution DEM surfaces. We parallelized the linear system algorithm for solving HASM with Compute Unified Device Architecture, a parallel programming model developed by NVIDIA. We designed a memory-saving strategy to enable the HASM algorithm to run on GPUs. The speedup ratio of GPU-based algorithm was tested and compared with CPU-based algorithm through simulations of both ideal Gaussian synthetic surface and real topographic surface in the loess plateau of Gansu province. The GPU-parallelized algorithm can attain an over 10x speedup ratio with the CPU-based algorithm as a reference. The speedup ratio increases with the scale and resolution of the dataset. The memory management strategy efficiently reduces the memory usage by more than eight times the grid cell number. Implementing HASM in the GPUs device enables modeling large-scale and high-resolution surfaces in a reasonable time period and implies the potential benefits from the use of GPUs as massive, parallel co-processors for arithmetic-intensive data-processing applications.
机译:为了找到一种准确,需要地形数据的应用程序的解决方案,例如流域水文建模和人类活动对环境系统影响的评估,开发了高精度表面建模(HASM)方法。尽管它可以产生比传统方法更高的精度的数字高程模型(DEM)表面,例如反距离加权,样条曲线和克里金法,HASM需要大量迭代来求解大型线性系统,这阻碍了其在高分辨率和大规模曲面插值中的应用。本文旨在演示利用图形处理单元(GPU)设备来加速HASM构建大规模和高分辨率DEM表面的过程。我们使用Compute Unified Device Architecture(由NVIDIA开发的并行编程模型)并行化了用于解决HASM的线性系统算法。我们设计了一种内存节省策略,以使HASM算法能够在GPU上运行。通过对甘肃黄土高原地区理想高斯合成表面和真实地形表面的模拟,测试了基于GPU的算法的提速比并将其与基于CPU的算法进行了比较。以基于CPU的算法为参考,GPU并行算法可实现超过10倍的加速比。加速比随数据集的规模和分辨率而增加。内存管理策略有效地将内存使用量减少了网格单元数的八倍以上。在GPU设备中实现HASM可以在合理的时间段内对大型和高分辨率曲面进行建模,并暗示了将GPU用作用于算术密集型数据处理应用程序的大规模并行协处理器的潜在好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号